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Heart damage associated with cooked
meat mutagens
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Mutagenic heterocyclic amines are produced during the ordinary cooking of meats and fish. When metabolically
activated, heterocyclic amines will form covalent adducts with DNA, which, if not repaired, may affect the flow
of genetic information in a cell. It has been proposed previously that heterocyclic amine mutagens contribute to
the incidence of dietary-related cancers because they cause somatic cell mutations and induce tumors in rodents
and nonhuman primates. Recent work has shown that some cooked food mutagens preferentially produce DNA
damage in heart cells, DNA adduct levels are directly related to dose and duration of mutagen exposure, the
dietary damage persists for long intervals in cardiac tissue, and mitochondrial DNA is more vulnerable than
nuclear DNA to these mutagens. Because cardiac myocytes are terminally differentiated cells that have lost their
ability to divide, the capacity to repair DNA damage is a critical factor in the proper function of cardiomyocytes,
and cardiac myocytes seem to have limited DNA repair capabilities. DNA damage formed by dietary components,
such as heterocyclic amines, might accumulate with time because of inefficient repair and thereby affect heart
cell function or viability. The possibility that dietary habits play a role in idiopathic cardiomyopathies and
congestive heart disease should be explored in greater defjdh Nutr. Biochem. 8:490—-496, 199@)Elsevier
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Introduction ciated with heating or cooking these foodi fact, natural
Epidemiological studies indicate that diet is an important sqbstances that contain amino aC|.ds, creatm(m)e, and ougars
factor in the causes of cardiovascular diseasBiets rich will, when heated, yield mutagenic heterocycllq amiftés.

) These mutagens also are enriched in pan gravies and come

'r?slf:‘gjggt;%i(‘;aet:%écgscgggftie%er?girslﬁlyl W'E{Eé?gr&fﬁsed off in heating smoke and fumés®Greater biologic activity
y is generally associated with overcooking and charring

other components in food that could have adverse effects on eats, whereas lower temperature and increased water, e.g
the cardiovascular system. For example, cooked meats an tewin’g and poaching, generate less mutadeadthough T
EZ?erg%nL?ilg :m%%g%eheﬁgrg:ug%eg%iﬁgg E&aer?gfnggg'c the distribution and yields of heterocyclic amines can vary

yelic > y ; ; with the method of cooking, all heating of meats results in
from all major protein sources of the American diet that are some mutagenic activity®® and food-borne heterocyclic
cooked under normal conditions. Major protein SOUrces are » inag have been found in urine samples of healthy human
meat and fish, but other high-protein foods such as €9gs,g e cts eating cooked meat in their daily diéts3 There-
beans, milk, and cheese can have mutagenic activity a5S0%qre, individuals who consume cooked meats in their regular
diet may be continually exposed to potentially harmful
compounds.
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activation® These compounds are absorbed rapidly from the NH,
gastrointestinal tract and transformed metabolically into CHs N:<
several products. Metabolic activation occurs via a two-step N HsC. _N N
process. The amino moiety of heterocyclic amines is first =z | >—NH2 \E “CH,4
N-oxidized by cytochrome P450-dependent mono-oxygen- SN N/ XN

ase systenté'1°that are most highly concentrated in liver
but have been detected in other tisstfetn rodents, the PhIP MelQx
isozymes CYP1Al1 and CYP1A2 are both involved in
N-hydroxylation of cooked meat mutagetfsOn the other
hand, human liver microsomes almost exclusively catalyze NH,
mutagen oxidation by CYP1A¥® Comparative studies N=(
using rat, nonhuman primate, and human liver microsomal N
fractions showed that human liver microsomes are more
active than the others in catalyzing heterocyclic amine SN
activation!®2° It is well known that different cytochrome
P450 enzymes involved in the metabolism of xenobiotic IQ
-SUbStrates dif-fer- markedly in their reSpon-Se to enzyme Figure 1 The chemical structures of the cooked meat mutagens
inducers and inhibitors. Clearly, the expression, regulation, ;2 i 1 methyi-6-phenylimidazof4,5-bjpyridine  (PhIP), 2-amino-
and specificity of P450-activating enzymes are species- andg s-dimethylimidazo[4,5-flquinoxaline (MelQx) and 2-amino-3-methy-
tissue-specific. limidazo[4,5-f]quinoline (IQ).
N-hydroxylated intermediates are converted by phase Il
enzymes to highly reactive electrophilic species capable of
covalently binding to nucleic acids and protefn§uch most abundantly in liver tissue—the proximal site of acti-
downstream activation systems have been described thatation. For the early years after their discovery, the focus of
include acetylation, sulfation, phosphorylation, and amino cooked food mutagen research was on their carcinogenicity.
acylation, mediated by acetyltransferases, sulfotransferasesit is thought that these agents contribute to the incidence of
kinases, and amino acyl-tRNA synthetases, respectffely. dietary-related cancers because they cause somatic cell
More than one activation system can operate in a tissue, andnutations and induce tumors in animal mod&il&3°0-32
indeed pathways frequently compete with one another. Every heterocyclic amine tested thus far is carcinogenic in
N-hydroxylamines are unstable in oxidative environments rodents and nonhuman primafe®. More recently, there
but are relatively nonreactive with DNA under physiologi- has been a consideration of the damage these compounds
cal conditions. However, it has been shown that the acetyl- might do to nonreplicating cells that are long-liv&tThere
transferaseN-acetoxy-derivatives are very reactive with might be toxic effects in which case, cells in a nonrenewing
DNA in vitro, forming the same deoxyguanosine-C8 adduct cellular compartment could die. Alternatively, there might
that is a major in vivo produc~22 This ability to form be long-lived, persistent damages that could cause abnormal
DNA adducts has been demonstrated repeatedly for everypathology and compromise function.
activated heterocyclic amine examined, most of which are  Recent interest has focused on the heterocyclic amines
extremely potent mutagens in bacterial assaydn con- 2-amino-3-methylimidazo[4,8quinoline (IQ), 2-amino-3,8-
trast to activation, detoxification is another mechanism that dimethylimidazo[4,5Fquinoxaline (MelQx), and 2-amino-
affects genotoxicity. Metabolites that result from cyto- 1-methyl-6-phenylimidazo[4,8]pyridine (PhIP) which are
chrome P450-mediated ring oxidation followed by conju- aminoimidazoazaarenes, structures of which are shown in
gation to sulfate op-glucuronic acid, are excreted in urine Figure 1 1Q, MelQx, and PhIP, at parts per million levels
and fece€?~2"These elimination pathways are quite prom- in the diet, have been shown to induce tumors in multiple
inent in rodents, but show little activity in human ass#s. organs of rodents with different target organ specifici-
Although the parent compounds can be detoxified by ring ties>®3032Furthermore, 1Q, MelQx, and PhIP have been
hydroxylation, once converted to tiNhydroxylamine, the implicated in causing heart damagfePhIP and MelQx are
proximal mutagen can be inactivated through conjugation present in cooked beef at levels of 7.5-50 ng/g for PhIP and
with glucuronide again catalyzed by cytochrome P450 0.1-5.9 ng/g for MelQx%:3* The two heterocyclic amines
enzymes. The overall intracellular levels of ultimate muta- account for roughly half of the total mutagenic potential of
gen/carcinogen will be determined by the balance betweenfried beef. Therefore by weight, PhIP is the most abundant
phase | activation/detoxification and phase Il activation/ heterocyclic amine in commonly fried meats and is esti-
detoxification. Furthermore, the health risk to humans from mated to be the most prevalent of these compounds in the
heterocyclic amines in the diet will depend on polymorphic American die* PhIP, however, is less mutagenic in
activating and detoxifying enzymes that can exhibit exten- routine bacterial mutagenicity tests than other abundant
sive interindividual variability?8-2° cooked meat mutagens, such as MelQx, which initially
caused this compound to be somewhat overloGkieder-

; estingly, PhIP undergoes phase | (but not phase Il) activa-
Cooked food mutagens and cardiac damage tion in the liver, thereby generating systemic N-OH-PhIP
Twenty-one heterocyclic amines from cooked-meats have for subsequent metabolism in extrahepatic tis€deRe-
been identified and their structures determif®d? All cently, several studies have indicated that PhIP may play a
heterocyclic amine mutagens form DNA-adducts, normally pathological role in tissues not normally associated with

J. Nutr. Biochem., 1997, vol. 8, September 491



Review

chemically induced tumors. High levels of DNA adducts dium may be at risk for genotoxic agents because of limited
have been observed in heart tissue of monkeys and rats fedNA repair capabilities. Several in vitro studies have
PhIP in their die>—=8 Treated animals displayed myocar- reported that as myoblasts differentiate into myocytes, their
dial abnormalities, including foci of chronic inflammation ability to repair DNA damage is reducéd“® Rats fed
and myocyte necrosf§:*° Tissue distribution studies dem- MelQx in the diet accumulated DNA damage in heart tissue
onstrated that of 12 tissues compared, the heart had thein direct proportion to exposure dose, and once induced,
highest levels of PhIP-induced addugts’”*®For example,  adducts persisted for long periods, suggesting very limited
Takayama et al> showed that after 4 weeks of dietary DNA repair®® In addition, food-mutagen DNA adducts
administration of PhIP to Fischer 344 rats, the highest level were removed from the genome of cultured cardiac myo-
of DNA damage observed was in heart tissue, approxi- cytes much less efficiently than nonmyocyfédn mam-
mately 10-fold higher than liver tissue. Overvik et*al.  malian cells, DNA repair exhibits intragenomic heterogene-
subsequently showed that DNA adducts are formed in rat ity—with some DNA sequences being repaired more
heart after dietary administration of MelQx. The most efficiently than other§%5! In contrast to overall DNA
remarkable result of these latter studies was that MelQX repair levels that are attenuated in differentiated rat myo-
adducts increased linearly in heart DNA throughout the piasts, some transcriptionally active, tissue-specific genes
10-month period that MelQx was administered and per- are selectively repaired, although repair rates are low
sisted for up to 5 months after the compound was with- re|ative to proliferating cell4? Terminally differentiated
drawn?! The data suggest that this class of DNA damage is myocytes in culture therefore seem to maintain DNA
relatively refractory to DNA repair processes in heart tissue damage surveillance for selected genes or genomic do-
and that these adducts can accumulate over a lifetime a”dmains, but the relevance of these in vitro results to gene-
exist at levels proportional to their dietary intake. Alterna- specific repair in myocardium in situ is not known because
tively, DNA adduct levels in several other tissues of rats | investigations have been reported, although DNA le-
exposed to the same dietary concentration of MelQX in- gjons " such as aromatic adducts and alkyl adducts, have

creased for only the first month or two, after which time a oo "shown to accumulate in mouse myocardium during
plateau was reached or the levels declifie@he develop- aging5253
d :

vTi?r:]ttr?; “giI(rgé(sgiaoS:]StgP(tﬁelnmrzj?t?cl?ar?jlr&tjc t:zssti’;;ncggreﬁz The consequences of persistent lesions in a cellular
P P 9 9 "genome depend on where the lesions are located and

'rgg'ig?;wgézthat gene induction was involved in mutagen whether or not the cell is replicating. It has been proposed
Com ar-ative studies have shown that the metabolicall that DNA lesions, not mutations, are likely to exert their
P Y most profound effects in nondividing cefi$DNA acts as a

activated forms of 1Q, MelQx, and PhiP are cytotoxic to template to duplicate itself, and deleterious mutations would
cardiac myocytes in cultuf®:4® Cultured rat cardiac cells -Mp P . e
disrupt the flow of information through progeny cells—

were exposed to varying concentrations of either the parent . X : .
compou[r)1ds or the\l-zydgroxylated mutagens. UnmodiFf)ied many of which might die or be selected against. Alterna-

IQ, MelQx, and PhIP did not result in detectable levels of tively, .the other major function pf DNA.iS to guide the
DNA adducts and were not cytotoxic, whereas thiir formation of RNA molecules, Wh_|ch cqntlnuglly turn over
hydroxylamine derivatives wef@:*3 Cardiac myocytes and need to be replaced. Lesions involving DNA that

were significantly more sensitive to the acute cytotoxic INterfere with RNA synthesis might be lethal to postmitotic
effects of activated MelOx and PhiP than were nonmyo- ?L?rilsticl);snrivi\éh??;ilggug:g ri:‘()lfasgeprgggr]ei’s r%rac?: )é?lgll?eglecd
|Cr¥ tfns)}oﬁstg:‘ t?hc;rﬁ) ﬂ&?ﬁ;&%ﬁ;%ﬂi?&ﬁng I\éﬁfg?en;? . proteins are synthesiz€d-°6The genetic flow of informa-
phase Il substrate specificities in myocytes for the various fion in myocytes could be more compatible with accumu-
heterocyclic amine mutagens. Cell-specific genotoxicity lated damage rather than lethal lesions. In postmitotic heart
was also noted. For exampldl-hydroxy-PhIP produced ~ fissue, for example, myocytes are typically binucleate and
four times more adducts in myocytes than in nonmyo- depending on the species, can be polypoid as they are for
cytes?® This latter observation may be related to differences humans’ Therefore, genetic complementation can occur. If
in metabolic processing between the two cell types. There- One allele is inactivated via a bulky adduct or other damage
fore, these results support the view that cardiac myocytesthat affects gene expression, the other allele can supply the
are capable of activating proximal food mutagens to DNA Missing gene product. However, the effective gene dosage
damaging species, and myocytes are therefore susceptible ifvould be cut in half, with the possibility of less protein
Vivo targets for dietary heterocyc"c amines. being made. Thus, function would be diminished as op-
posed to lost. There is suggestive evidence that DNA
- . damage can selectively alter cardiac gene transcription. For
DNA damage and repair in cardiac cells example, experiments showed a major depressive effect of
DNA damage is the primary lesion mediating many cyto- adriamycin on rat myocardial-actin mMRNA>® No depres-
toxic and mutagenic events, and there is increasing evidencesion of troponin C or glyceraldehyde-3-phosphate dehydro-
that many forms of DNA damage occur naturally through genase mRNAs was observed. This inhibitory effect of
exposure to dietary agerf$3® Because cardiac myocytes adriamycin might be attributable to blocking of RNA
are postmitotic and exist in a state of terminal differentia- polymerase Il by DNA damag®. Recent studies have, in
tion,*® the capacity to repair DNA damage is a critical factor fact, demonstrated PhIP-DNA adducts inhibit plasmid re-
in a myocyte’s proper function and longevity. The myocar- porter gene expression in mammalian céliglowever, no
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Figure2 Transmission electron micrographs of neonatal rat cardiac myocytes in culture. Control myocytes are shown in A and B. Myocytes exposed
to 50 wM N-OH-PhIP for 2 hr, then washed, placed in culture medium, and fixed for EM 24 hr later are shown in C and D.

in vivo studies have been performed examining the effects myocytes, untreated and exposed to activated mutagen.
of cooked-food-mutagen damage on gene expression. Figure 2Ashows a cross section of an untreated myocyte
with a prominent lipid droplet and large numbers of mito-

; . chondria.Figure 2Bis a higher magnification of a control
Damage to mitochondria myocyte, showing normal mitochondria and dispersed myo-
To gain a better understanding of the influence of dietary filaments. A 2-hr exposure of myocytes to 108 N-OH-
factors on a myocyte’s ability to maintain differentiated PhIP was moderately cytotoxic as judged by lactic acid
function for many years, it is important to consider damage dehydrogenase leakage (25% to 30% over 24 hr), whereas
to the mitochondrial genome in addition to the nuclear myocytes cultured in 5¢0M mutagen showed only back-
genome, because damaged mitochondria might alter cellularground levels of 5% to 7% enzyme |0¥s?3 However,
energy stores and thereby affect the ability of myocytes to myocytes exposed to 5M N-OH-PhIP for 2 hr, then fixed
overcome injury caused by dietary components. The mito- 24 hr later, revealed a very high proportion of dense bodies,
chondrial genome is an important cellular target for cyto- consistent with cellular damage and increased cellular
toxic compound$! Emerging evidence, moreover, indi- degradation processefigure 20). In addition, treated
cates significant mitochondrial DNA instability associated myocytes seemed to have fewer mitochondria and contained
with chronic diseases and aging of human myocardiéif. swollen mitochondria marked by abnormal crist&ég@re
One potential outcome of accumulated damage or mutations2D). In contrast to control myocytes, Davis et*8ifound
in the mitochondrial population is a reduction in oxidative that only 40% of cells exposed to 1Q0M N-OH-PhIP
phosphorylation and thus, AT®:54Indeed, accumulations  contained myofilaments, and many cells exhibited de-
of mutations and deletions in mitochondrial DNA with their creased numbers of mitochondria, Golgi membranes, and
associated defects in oxidative phosphorylation have beenglycogen. These results indicate that significant myocyte
implicated in a diverse group of clinical problems such as damage was incurred by a single acute exposure, and that
ischemic heart disease, diabetes, Parkinson’s disease, Alzmitochondria seem to be a sensitive target for N-OH-PhIP
heimer's disease, cancer, and agfAtt® toxicity. It has been shown that IQ and PhIP formed adducts

Mitochondria might be a preferred target for cooked food with mitochondrial DNA in vivo, and rats given 10 doses of

mutagens because mitochondrial DNA is more sensitive PhIP (100 mg/kg, p.o.) over 2 weeks had significantly more
than nuclear DNA to many types of mutagenic insfilts. mitochondrial DNA adducts than nuclear DNA adduf&s.
Figure 2shows ultrastructure aspects of neonatal rat cardiac One possible explanation for the accumulation of adducts in
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mitochondrial DNA with repetitive mutagen exposure is Acknowledgments
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diet and the human liver is capable of metabolizing the
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Mechanisms through which cardiac toxicity could be 5
expressed include metabolic pathways, membrane recep-
tors/properties, and chemical interactions with various sub-
cellular targets. None of these variables have been eluci-
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